High-Order Shock-Capturing Methods for Study of Shock-Induced Turbulent Mixing with Adaptive Mesh Refinement Simulations Man Long Wong Sanjiva K. Lele Advanced Modeling & Simulation Seminar Jun 6th, 2019 #### Motivation - Richtmyer-Meshkov (RM) instability, or RMI, occurs when a shock wave passes through a perturbed interface separating two fluids with different densities - In natural phenomena/engineering applications: - Supernova explosion (SNe) - o Inertial confinement fusion (ICF) - Supersonic combustion in scramjet RMI evolution (Image Credit: B. M. Wilson, R. Mejia-Alvarez and K. P. Prestridge) Supernova remnant (Image Credit: NASA/ESA/HEIC and The Hubble Heritage Team (STScI/AURA)) #### Motivation - A lack of understanding of turbulent mixing induced from RMI, due to: - \circ Only simultaneous measurements of density and velocity fields in 2D $^{1\ 2}$ - Direct numerical simulations still too expensive - Methods to save computational cost: - High-order shock-capturing schemes - Adaptive gridding for localized and mobile features (shocks, mixing regions, etc.) - High-order numerical schemes with adaptive mesh refinement (AMR) still not very popular for RMI simulations: - o Tritschler et al. 3 used high-order schemes with uniform grid to study RMI with re-shock - Grinstein and Gowardhan⁴ used AMR but only second order scheme for RMI simulations - o Mcfarland et al.⁵ also used second order scheme with AMR for inclined interface RMI Man Long Wong AMS Seminar Jun 6th, 2019 3 / 62 ¹Mohammad Mohaghar et al. "Evaluation of turbulent mixing transition in a shock-driven variable-density flow". In: Journal of Fluid Mechanics 831 (2017), pp. 779–825. ²Daniel T Reese et al. "Simultaneous direct measurements of concentration and velocity in the Richtmyer–Meshkov instability". In: *Journal of Fluid Mechanics* 849 (2018), pp. 541–575. ³VK Tritschler et al. "On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface". In: *Journal of Fluid Mechanics* 755 (2014), pp. 429–462. ⁴FF Grinstein, AA Gowardhan, and AJ Wachtor. "Simulations of Richtmyer–Meshkov instabilities in planar shock-tube experiments". In: *Physics of Fluids* 23.3 (2011), p. 034106. ⁵ Jacob A McFarland, Jeffrey A Greenough, and Devesh Ranjan. "Computational parametric study of a Richtmyer-Meshkov instability for an inclined interface". In: Physical Review E 84.2 (2011), p. 026303. #### Motivation - Goals of research: - Numerical framework for simulations of RMI and similar types of flows. The framework combines: - Improved high-order shock-capturing methods to preserve fine-scales better - AMR technique that only applies fine grid cells around localized features - Study the turbulent mixing induced by RMI through simulations: - Variable-density mixing effects - Effects of Reynolds number - Analyze the performance of reduced-order modeling through second-moment closures 4 / 62 Man Long Wong AMS Seminar Jun 6th, 2019 #### Outline - 1. A localized dissipation nonlinear scheme for shock- and interface-capturing in compressible flows - 2. An adaptive mesh refinement framework for multi-species simulations with shock-capturing capability - 3. High-resolution Navier-Stokes simulations of Richtmyer-Meshkov instability with re-shock - 4. Budget of turbulent mass flux and its closure for Richtmyer-Meshkov instability Man Long Wong AMS Seminar Jun 6th, 2019 5 / 62 # Weighted compact nonlinear schemes (WCNS's): governing equation • Consider a scalar conservation law for 1D problem: $$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0$$ ullet Semi-discretize this equation on a grid with N points: $$\left. \frac{\partial u_j}{\partial t} + \left. \frac{\partial f(u)}{\partial x} \right|_j = 0$$ • Need a discrete approximation of the flux derivative: $$\frac{\partial f(u)}{\partial x}\Big|_{x}$$ ◆□▶◆圖▶◆臺▶◆臺▶ 臺庫 釣९○ Jun 6th, 2019 6 / 62 # Illustration of methodology of WCNS's 6 7 Given the solution values at cell nodes Man Long Wong AMS Seminar Jun 6th, 2019 7 / 62 ⁶Xiaogang Deng and Hanxin Zhang. "Developing high-order weighted compact nonlinear schemes". In: Journal of Computational Physics 165.1 (2000), pp. 22–44. ⁷Shuhai Zhang, Shufen Jiang, and Chi-Wang Shu. "Development of nonlinear weighted compact schemes with increasingly higher order accuracy". In: Journal of Computational Physics 227.15 (2008), pp. 7294–7321. # Illustration of methodology of WCNS's $^{6\ 7}$ Left-biased interpolation for solution value at cell midpoint $\tilde{u}^L_{j+\frac{1}{2}}$ Man Long Wong AMS Seminar Jun 6th, 2019 7 / 62 ⁶Deng and Zhang, "Developing high-order weighted compact nonlinear schemes". ⁷Zhang, Jiang, and Shu, "Development of nonlinear weighted compact schemes with increasingly higher order accuracy", 4 👩 🔻 4 🛢 ৮ 🔞 🗦 📲 💌 🤏 💎 # Illustration of methodology of WCNS's $^{6\ 7}$ Right-biased interpolation for solution value at cell midpoint $\tilde{u}^R_{j+\frac{1}{2}}$ ⁶Deng and Zhang, "Developing high-order weighted compact nonlinear schemes". ⁷Zhang, Jiang, and Shu, "Development of nonlinear weighted compact schemes with increasingly higher order accuracy", 4 🗇 🕟 😩 🔻 🔌 🗦 👢 💌 🔩 🦠 # Illustration of methodology of WCNS's $^{6\ 7}$ Flux-difference splitting method to get the interface solution value and flux at midpoint from left-biased and right-biased interpolated values ⁶Deng and Zhang, "Developing high-order weighted compact nonlinear schemes". ⁷Zhang, Jiang, and Shu, "Development of nonlinear weighted compact schemes with increasingly higher order accuracy" > 4 💯 > 4 😤 > 4 😤 > 💐 = 🛷 🔾 # Illustration of methodology of WCNS's 6 7 Explicit/compact finite difference to approximate $\left. \frac{\partial f(u)}{\partial x} \right|_j$ at nodes, e.g. explicit sixth order midpoint-and-node-to-node finite difference (MND): $$\left. \frac{\partial f(u)}{\partial x} \right|_{j} \approx \frac{1}{\Delta x} \left[\frac{3}{2} \left(\tilde{f}_{j + \frac{1}{2}} - \tilde{f}_{j - \frac{1}{2}} \right) - \frac{3}{10} \left(f_{j + 1} - f_{j - 1} \right) - \frac{25}{384} \left(\tilde{f}_{j + \frac{3}{2}} - \tilde{f}_{j - \frac{3}{2}} \right) \right]$$ Man Long Wong AMS Seminar Jun 6th, 2019 7 / 62 #### Left-biased explicit interpolations $$EI_3: \quad \tilde{u}_{j+\frac{1}{2}}^{(3)} = \frac{1}{8} \left(15u_{j+1} - 10u_{j+2} + 3u_{j+3} \right)$$ $\sum d_k^{\text{upwind}} EI_k \quad (5^{\text{th}} \text{ order}); \qquad EI_{\text{central}} = \sum d_k^{\text{central}} EI_k \quad (6^{\text{th}} \text{ order})$ ### Nonlinear interpolations In weighted essentially non-oscillatory (WENO) interpolations, the linear weights d_k are replaced with nonlinear weights ω_k for shock-capturing: $$EI_{\text{upwind}} = \sum_{k=0}^{2} d_{k}^{\text{upwind}} EI_{k} \quad (5^{\text{th}} \text{order}); \qquad EI_{\text{central}} = \sum_{k=0}^{3} d_{k}^{\text{central}} EI_{k} \quad (6^{\text{th}} \text{order})$$ $$\downarrow$$ $$EI_{\text{nonlinear}} = \sum_{k=0}^{2} \omega_{k}^{\text{upwind}} EI_{k} \quad / \quad \sum_{k=0}^{3} \omega_{k}^{\text{central}} EI_{k}$$ - ω_k^{upwind} : traditional WENO weights by Jiang and Shu (JS)⁸ and improved weights (Z)⁹ - $\bullet \ \omega_k^{\rm central} :$ CU-M2 weights $^{\rm 10}$ Man Long Wong AMS Seminar Jun 6th, 2019 9 / 62 ⁸Guang-Shan Jiang and Chi-Wang Shu. "Efficient implementation of weighted ENO schemes". In: Journal of computational physics 126.1 (1996), p. 202–228. ⁹Rafael Borges et al. "An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws". In: *Journal of Computational Physics* 227.6 (2008), pp. 3191–3211. ^{008),} pp. 3191–3211. 10 XY Hu and Nikolaus A Adams. "Scale separation for implicit large eddy simulation". In: Journal of Computational Physics 230.19 (2011), pp. 7249-7249. < > # Locally dissipative (LD) nonlinear weights • The LD¹¹ nonlinear weights (**hybrid weights**) are introduced for localized dissipation at shocks or discontinuities for regularization: $$\omega_k = \begin{cases} \sigma \; \frac{\omega_k^{\rm upwind}}{k} + (1 - \sigma) \; \omega_k^{\rm central}, & \text{if } R_\tau > \alpha_{RL}^\tau \\ \omega_k^{\rm central}, & \text{otherwise} \end{cases}, \quad k = 0, 1, 2, 3$$ where R_{τ} is a relative smoothness indicator. σ is a shock sensor. - Ensure minimal numerical dissipation in smooth regions (central interpolation) and one-sided interpolation at discontinuities - $\omega_k^{ m upwind}$ is the Z nonlinear weights and $\omega_k^{ m central}$ is **improved** from CU-M2 nonlinear weights for localized numerical dissipation Man Long Wong AMS Seminar Jun 6th, 2019 10 / 62 ¹¹ Man Long Wong and Sanjiva K Lele. "High-order localized dissipation weighted compact nonlinear scheme for shock-and interface-capturing in compressible flows". In: Journal of Computational Physics 339 (2017), pp. 179–209. # Approximate dispersion relation (ADR) technique¹² - For linear schemes, analytical dispersion and dissipation characteristics can be obtained from Fourier analysis - ADR used to compute the characteristics of the nonlinear schemes numerically: ¹² Sergio Pirozzoli. "On the spectral properties of shock-capturing schemes". In: Journal of Computational Physics 219.2 (2006); pp. #89–497; 🗦 🖹 💆 🔗 ### Numerical tests: 1D shock tube problems 1. Shu-Osher problem¹³ [200 points]: Mach 3 shock interacting with a sinusoidal density field 2. Multi-species shock tube¹⁴ [100 points]: ¹³ Chi-Wang Shu and Stanley Osher. "Efficient implementation of essentially non-oscillatory shock-capturing schemes" [In: Journal of Computational Physics of the th #### Numerical test: 2D double Mach reflection¹⁵ - A Mach 10 shock impinges on the wall, and a complex shock reflection structure evolves - Kelvin-Helmholtz instability along the slip line is only damped by numerical dissipation - The smaller the numerical dissipation, the more the rolled up vortices along the slip line ¹⁵ Phillip Colella and Paul R Woodward. "The piecewise parabolic method (PPM) for gas-dynamical simulations". In: Journal of computational physics 54.1 (1984), pp. 174–201. ## Numerical test: 2D double Mach reflection (cont.) • Density contours [Full domain grid size: 960×240]: (a) WCNS5-JS (b) WCNS5-Z (c) WCNS6-CU-M2 (d) WCNS6 - LD - WCNS5-JS and WCNS5-Z too dissipative to produce rolled-up vortices along the slip line - WCNS6-CU-M2 and WCNS6-LD can capture much more fine-scale vortical structures along the slip line #### Numerical test: 3D Taylor-Green vortex - An essentially incompressible periodic problem - As time evolves, the inviscid vortex stretches and produces features at smaller scales - Zero Q-criterion at t = 8 with 64^3 grid: • Finer features are captured with WCNS6-CU-M2 and WCNS6-LD Man Long Wong AMS Seminar Jun 6th, 2019 15 / 62 # Numerical test: 3D Taylor-Green vortex (cont.) - WCNS6-LD preserves more KE over times - Both WCNS6's outperform WCNS5's in predicting growth of enstrophy - Both WCNS6's can better capture features up to high wavenumber Spectra of u at t=5: Man Long Wong AMS Seminar Jun 6th, 2019 16 / 62 ### Summary - Improved nonlinear interpolation developed for a type of nonlinear schemes for problems with shocks and material interfaces - The interpolation adaptively switches between one-sided interpolation around discontinuities and non-dissipative central interpolation in smooth regions - The improved scheme WCNS-LD: - o robust at shocks and discontinuities through the regularization - o good resolution and low dissipation properties that are more suited for vortical features Man Long Wong AMS Seminar Jun 6th, 2019 17 / 62 #### Outline - 1. A localized dissipation nonlinear scheme for shock- and interface-capturing in compressible flows - 2. An adaptive mesh refinement framework for multi-species simulations with shock-capturing capability - 3. High-resolution Navier-Stokes simulations of Richtmyer-Meshkov instability with re-shock - 4. Budget of turbulent mass flux and its closure for Richtmyer-Meshkov instability Man Long Wong AMS Seminar Jun 6th, 2019 18 / 62 # Overview of patch-based adaptive mesh refinement (AMR) - Patch-based AMR¹⁶¹⁷ designed for uniform structured Cartesian grids - A hierarchy of nested "patches" of levels of varying grid resolution - Multi-time stepping with Runge-Kutta schemes: $$\frac{\Delta t_l}{\Delta x_l} = \frac{\Delta t_{l-1}}{\Delta x_{l-1}} = \dots = \frac{\Delta t_0}{\Delta x_0}$$ • Requires numerical scheme in **conservative** form for treatment at coarse-fine AMR grid boundaries to ensure **discrete conservation**: $$\frac{\partial u_{i,j}}{\partial t} + \frac{\hat{F}_{i+\frac{1}{2},j} - \hat{F}_{i-\frac{1}{2},j}}{\Delta x} + \frac{\hat{G}_{i,j+\frac{1}{2}} - \hat{G}_{i,j-\frac{1}{2}}}{\Delta y} = 0$$ ¹⁶Marsha J Berger and Phillip Colella. "Local adaptive mesh refinement for shock hydrodynamics". In: *Journal of computational Physics* 82.1 (1989), pp. 64–84. ¹⁷ Marsha J Berger and Joseph Oliger. "Adaptive mesh refinement for hyperbolic partial differential equations". In: Journal of computational Physics 53.3 (1984), pp. 484–512. ### Relation between finite difference schemes and flux difference form¹⁸ • For a central finite difference scheme (compact or explicit) for flux derivative: $$\alpha \hat{F}'_{j-1} + \beta \hat{F}'_{j} + \alpha \hat{F}'_{j+1} = \frac{1}{\Delta x} \left(-a_{\frac{5}{2}} F_{j-2} - a_{2} F_{j-\frac{3}{2}} - a_{\frac{3}{2}} F_{j-1} - a_{1} F_{j-\frac{1}{2}} + a_{1} F_{j+\frac{1}{2}} + a_{\frac{3}{2}} F_{j+1} + a_{2} F_{j+\frac{3}{2}} + a_{\frac{5}{2}} F_{j+2} \right)$$ • Can be rewritten into flux difference form: $$\alpha \widehat{F}_{j-\frac{1}{2}} + \beta \widehat{F}_{j+\frac{1}{2}} + \alpha \widehat{F}_{j+\frac{3}{2}} = a_{\frac{5}{2}} F_{j-1} + a_{2} F_{j-\frac{1}{2}} + \left(a_{\frac{3}{2}} + a_{\frac{5}{2}}\right) F_{j} + \left(a_{1} + a_{2}\right) F_{j+\frac{1}{2}} + \left(a_{\frac{3}{2}} + a_{\frac{5}{2}}\right) F_{j+1} + a_{2} F_{j+\frac{3}{2}} + a_{\frac{5}{2}} F_{j+2}$$ s.t. $$\widehat{\widehat{F}_{j}'} = \frac{1}{\Delta x} \left(\widehat{F}_{j+\frac{1}{2}} - \widehat{F}_{j-\frac{1}{2}} \right)$$ Man Long Wong AMS Seminar Jun 6th, 2019 20 / 62 ¹⁸ A Subramaniam, ML Wong, and SK Lele. "A High-Order Weighted Compact High Resolution Scheme with Boundary Closures for Compressible Turbulent Flows with Shocks". In: arXiv preprint arXiv:1809.05784 (2018). # Hydrodynamics Adaptive Mesh Refinement Simulator (HAMeRS)¹⁹ In-house flow solver built on parallel SAMRAI library from LLNL to simulate compressible single-species and multi-species flows with adaptive mesh refinement (AMR) and high-order shock-capturing methods: # Numerical test: 2D inviscid shock-vortex interaction²⁰ - Isentropic vortex interacts with Mach 1.2 stationary shock - Distorted vortex produces reflected shocks - Multiple sound waves generated from reflected shock-vortex interaction Sound pressure, $(p-p_{\infty})/(\rho_{\infty}c_{\infty}^2)$, of reference solution with grid resolution 4096×4096 : ²⁰ Osamu Inoue and Yuji Hattori. "Sound generation by shock-vortex interactions". In: Journal of Fluid Mechanics 380 (1999), pp. 87-116. 🗷 🕒 🖹 🖹 🔍 🔍 Man Long Wong AMS Seminar Jun 6th, 2019 22 / 62 # Numerical test: 2D inviscid shock-vortex interaction (cont.) Refined regions of AMR simulation with base grid resolution 128×128 and 1:2 refinement ratio (green: level 1; red: level 2): Comparison with 512×512 uniform grid simulation: (a) Global sound pressure (b) Local sound pressure AMS Seminar 23 / 62 # Numerical test: 2D inviscid shock-vortex interaction (cont.) • Weighted number of cells: $$\sum_{l=0}^{l_{max}} \omega_l N_l, \quad \omega_l = \frac{\Delta x_{l_{max}}}{\Delta x_l}$$ • In this test problem: $$\omega_0 = 1/4,$$ $$\omega_1 = 1/2,$$ $$\omega_2 = 1$$ Weighted number of cells of AMR simulation $\approx 30\%$ of number of cells of uniform grid (262144 cells) simulation at the end 24 / 62 Man Long Wong AMS Seminar - $Ma_s = 1.68$, R = 1.016 mm - Material interface with characteristic length scale $\epsilon_i = 0.125 \ \mathrm{mm}$ - A quadrant of the domain is simulated • Different grids settings: | Grid | Base grid resolution | Refinement ratios | Finest grid spacing $(\mu \mathrm{m})$ | |------|-----------------------------|-------------------|----------------------------------------| | Α | 384 × 128 × 128 | 1:2, 1:2 | 7.94 | | В | $768 \times 256 \times 256$ | 1:2, 1:2 | 3.97 | | C | $1536\times512\times512$ | 1:2, 1:2 | 1.98 | Gradient sensor on pressure, multiresolution sensor on density, and sensor on mass fraction used for refinement • Conservative multi-component Navier-Stokes equations for ideal fluid mixture are solved: $$\frac{\partial \rho Y_i}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} Y_i) + \nabla \cdot \boldsymbol{J_i} = 0$$ $$\frac{\partial \rho \boldsymbol{u}}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} \boldsymbol{u} + p \boldsymbol{\delta} - \boldsymbol{\tau}) = 0$$ $$\frac{\partial E}{\partial t} + \nabla \cdot [(E + p) \boldsymbol{u}] - \nabla \cdot (\boldsymbol{\tau} \cdot \boldsymbol{u} - \boldsymbol{q_c} - \boldsymbol{q_d}) = 0$$ where ρ , u, p and E are the density, velocity vector, pressure and total energy of the fluid mixture respectively. Y_i is the mass fraction of species i=1,2,...,N, with N the total number of species. - J_i is diffusive mass flux for each species. τ , q_c and q_d are viscous stress tensor, conductive heat flux and inter-species diffusional enthalpy flux respectively of the mixture. - Sixth order finite differences for viscous and diffusive fluxes Man Long Wong AMS Seminar Jun 6th, 2019 26 / 62 • Density fields in xy plane at z=0 of AMR simulation with grid C: Man Long Wong AMS Seminar Jun 6th, 2019 27 / 62 • Refined regions (green: level 1; red: level 2): AMS Seminar 3D visualization of mass fraction with grid C at end of simulation $t=17.6~\mu s$ 29 / 62 • y_{max} is y coordinate of the upper point with SF_6 concentration equals $0.01 \max(Y_{SF6})$ $$l_x = x_d - x_u$$ $$l_{yz} = y_{max} + z_{max}$$ All statistical quantities of interests are grid converged (b) $$l_x/l_y$$ (c) Circulation (d) Integrated scalar dissipation rate ### Summary - AMR framework developed for multi-species CFD applications - Physics-based sensors such as gradient and multiresolution sensors implemented to detect features for refinement - Framework successfully tested with simulations²¹ that consist of interactions between shocks, material interfaces, and vortices - The sensors for mesh refinement can successfully identify: - Shock wave and acoustic waves - Vortical feautes - Mixing regions #### Outline - 1. A localized dissipation nonlinear scheme for shock- and interface-capturing in compressible flows - 2. An adaptive mesh refinement framework for multi-species simulations with shock-capturing capability - 3. High-resolution Navier-Stokes simulations of Richtmyer-Meshkov instability with re-shock - 4. Budget of turbulent mass flux and its closure for Richtmyer-Meshkov instability Man Long Wong AMS Seminar Jun 6th, 2019 32 / 62 #### Problem setup ullet Compressible 2D and 3D multi-species Navier-Stokes simulations set up to study shock-induced mixing between SF_6 and air due to RM instability: - $Ma_s = 1.45$ - (a) 3D configuration (b) Space-time (x-t) diagram - $At = \frac{\rho_{SF_6} \rho_{air}}{\rho_{SF_6} + \rho_{air}} = 0.68$ - 2D domain is cross-section of the 3D domain - Mixing region shocked **twice** (first shock and re-shock) Man Long Wong AMS Seminar Jun 6th, 2019 33 / 62 #### Perturbations Perturbation modes seeded on the interfaces: • 2D: $$S(y) = A \sum_{m} \cos \left(\frac{2\pi m}{L_y} y + \phi_m \right)$$ • 3D: $$S(y,z) = A \sum_{m} \cos \left(\frac{2\pi m}{L_{yz}} y + \phi_m \right) \cos \left(\frac{2\pi m}{L_{yz}} z + \psi_m \right)$$ - 11 modes in total: $0.833 \text{ mm} \le \lambda_m \le 1.25 \text{ mm}$ - A = 0.0141 mm - Estimated with impulsive theory, 2D and 3D problems have same: - \circ linear growth rates $\dot{\eta}_{imp}$ - \circ time scales au_c initial conditions 34 / 62 ## Configurations of 2D and 3D adaptive mesh refinement (AMR) simulations - Simulated with the AMR solver (HAMeRS) - Sixth order WCNS-LD for convective flux - Sixth order finite differences for diffusive and viscous fluxes - Three levels of adaptive meshes (two levels of AMR) - Gradient and multiresolution sensors; also sensor on mass fraction field - Grid resolutions used for convergence test: | 2D Grid | Base Grid Resolution | Refinement Ratio | Finest Grid Spacing (mm) | |---------|----------------------|------------------|--------------------------| | D | 2560×128 | 1:2, 1:4 | 0.0244 | | Е | 5120×256 | 1:2, 1:4 | 0.0122 | | F | 10240×512 | 1:2, 1:4 | 0.0061 | | G | 20480×1024 | 1:2, 1:4 | 0.0031 | | 3D | Base Grid | Refinement | Finest Grid | Maximum Weighted | |------|------------------------------|------------|-------------------|------------------| | Grid | Resolution | Ratio | Grid Spacing (mm) | Number of Cells | | В | $640 \times 32 \times 32$ | 1:2, 1:4 | 0.0977 | 30M | | С | $1280 \times 64 \times 64$ | 1:2, 1:4 | 0.0488 | 144M | | D | $2560 \times 128 \times 128$ | 1:2, 1:4 | 0.0244 | 778M | • \sim 34 points across smallest initial wavelength for grid D ## Visualizations of mole fraction (3D, grid D) Man Long Wong AMS Seminar 36 / 62 ## 2D grid convergence study (over 24 realizations) $\text{Mixing width } W = \int 4\bar{X}_{\mathrm{SF}_{6}}(1-\bar{X}_{\mathrm{SF}_{6}})dx; \quad \text{Mixedness } \Theta = \frac{\int \overline{X_{SF_{6}}(1-X_{SF_{6}})}dx}{\int \bar{X}_{\mathrm{SF}_{6}}(1-\bar{X}_{\mathrm{SF}_{6}})dx}; \quad \text{TKE} = \frac{1}{2}\rho u_{i}^{\prime\prime}u_{i}^{\prime\prime}$ #### (a) Mixing width #### (b) Mixedness (c) TKE (integrated) (d) Scalar dissipation rate (integrated) (e) Enstrophy (integrated) Man Long Wong AMS Seminar Jun 6th, 2019 ## 3D grid convergence study $$\text{Mixing width } W = \int 4 \bar{X}_{\mathrm{SF}_{6}} (1 - \bar{X}_{\mathrm{SF}_{6}}) dx; \quad \text{Mixedness } \Theta = \frac{\int \overline{X}_{SF_{6}} (1 - X_{SF_{6}}) dx}{\int \bar{X}_{\mathrm{SF}_{6}} (1 - \bar{X}_{\mathrm{SF}_{6}}) dx}; \quad \text{TKE} = \frac{1}{2} \rho u_{i}^{\prime \prime} u_{i}^{\prime \prime} = \frac{1}{2} \rho u_{i}^{\prime \prime} u_{i}^{\prime \prime} = \frac{1}{2} \rho \rho$$ #### (a) Mixing width #### (b) Mixedness #### (c) TKE (integrated) (d) Scalar dissipation rate (integrated) (e) Enstrophy (integrated) ## Mole fraction fields $t^* = t/\tau_c$ (a) $$t^* = 7.5 \ (t = 0.40 \ \text{ms})$$ (b) $$t^* = 20.7 \ (t = 1.10 \ \text{ms})$$ (c) $$t^* = 22.6 \ (t = 1.20 \ \text{ms})$$ (d) $$t^* = 32.9 (t = 1.75 \text{ m})$$ #### 2D, grid G Jun 6th, 2019 39 / 62 ### Reduced Reynolds number 3D simulations • Reynolds number Re_W is reduced by increasing physical transport coefficients (TC's) by factors of 2 & 4 (μ , μ_v , D, and κ). This is as same as cases with reduced Re_W , while Sc and Pr unchanged. $$Re_W = \frac{\bar{\rho}u_{rms}W}{\bar{\mu}}, \text{ where } u_{rms} = \sqrt{\overline{u_i''u_i''}/3}$$ • $\langle \cdot \rangle$ is additional averaging in central part of mixing layer: $4\bar{X}_{SF_6}(1-\bar{X}_{SF_6})>0.9$ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□◆ #### Mole fraction fields (a) $$t^* = 7.5 \ (t = 0.40 \ \text{ms})$$ (c) $$t^* = 22.6 \ (t = 1.20 \ \text{ms})$$ d) $$t^* = 32.9 \ (t = 1.75 \text{ ms})$$ #### Physical transport coefficients, grid D (b) $t^* = 20.7 (t = 1.10 \text{ ms})$ (c) $t^* = 22.6 (t = 1.20 \text{ ms})$ (d) $t^* = 32.9 (t = 1.75 \text{ ms})$ 4× physical transport coefficients, grid D Jun 6th, 2019 41 / 62 ◆ロト ◆昼 ト ◆ 重 ト ◆ 重 | 重 | り Q () #### Flow compressibility and effective Atwood number • Turbulent Mach number Ma_t and effective Atwood number At_e : $$Ma_{t} = \frac{\sqrt{3}u_{rms}}{\bar{c}}, \quad At_{e} = \frac{\sqrt{\bar{\rho}'^{2}}}{\bar{\rho}}$$ $$0.30 \\ 0.25 \\ 0.20 \\ \hline 0.15 \\ 0.10 \\ 0.05 \\ 0.00 \\ \hline 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 3D, 2 \times \text{physical TC}\acute{s} \\ 0.5 \\ 0.3D, 2 \times \text{physical TC}\acute{s} \\ 0.5 \\ 0.3D, 2 \times \text{physical TC}\acute{s} \\ 0.3D, 2 \times \text{physical TC}\acute{s} \\ 0.3D, 4 \times \text{physical TC}\acute{s} \\ 0.4 \\ \hline 20 \\ 0.3D, 4 \times \text{physical TC}\acute{s} \\ 0.3D, 4 \times \text{physical TC}\acute{s} \\ 0.4 \\ \hline 20 \\ 0.3D, 4 \times \text{physical TC}\acute{s} \\ 0.3D, 4 \times \text{physical TC}\acute{s} \\ 0.4 \\ \hline 20 \\ 0.1 \\ 0.0 \\ 0.1 \\ 0.0 \\ 0.1 \\ 0.0 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1$$ - Flows are weakly compressible - $At_e \approx 0$ due to initially diffuse interface, but flows become non-Boussinesq $(At_e > 0.05)$ as the interfaces become sharper after first shock and re-shock Man Long Wong AMS Seminar Jun 6th, 2019 42 / 62 ### Mixing: mixing width - The mixing width is normalized by $\dot{\eta}_{imp}$ and τ_c : $W^* = \frac{W W|_{t=0}}{\dot{\eta}_{imp}\tau_c}$ - ullet With physical TC's, W^* of 2D case grows at a faster rate compared to that of 3D case after first shock initially but growth rates are similar at late times - After re-shock, the 2D mixing width grows at a much faster rate - 3D case with reduced Reynolds number has slower growth rate in mixing width before re-shock but growth rates are similar after re-shock #### Mixing: mixedness • The mixedness is defined as: $$\Theta = \frac{\int \overline{X_{\rm SF_6} (1 - X_{\rm SF_6})} dx}{\int \bar{X}_{\rm SF_6} \left(1 - \bar{X}_{\rm SF_6}\right) dx}$$ - Mixedness quantifies the amount of fluids molecularly mixed within the mixing region - The 2D and 3D mixednes values are converging to 0.7 and 0.8 respectively [0.85 for 3D RMI from Tritschler et al.²², 0.8 for 3D RMI from Mohaghar et al.²³] ²²Tritschler et al., "On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface". ²³Mohaghar et al., "Evaluation of turbulent mixing transition in a shock-driven variable-density flow". ## Mixing: mole fraction profiles (a) After first shock, before reshock, 3D - (b) After reshock, 3D - The normalized position is defined as: $x^* = \frac{x x_0}{W(t)}$ - Asymmetric, spikes penetrate more than bubbles - Profiles collapse quite well at late times, similar to planar Rayleigh-Taylor instability²⁴ ²⁴ Daniel Livescu et al. "High-Reynolds number Rayleigh-Taylor turbulence". In: Journal of Turbulence 10 (2009), N13. > 4 7 > 4 2 > 4 2 > 4 2 > 4 2 > 5 < 4 </p> ## Mixing: mole fraction variance profiles • $$\Theta = \frac{\int \overline{X_{SF_6} (1 - X_{SF_6})} dx}{\int \bar{X_{SF_6}} \left(1 - \bar{X_{SF_6}}\right) dx} = 1 - 4 \int \overline{X_{SF_6}'^2} dx^*$$ (a) After first shock, before reshock, 3D - (b) After reshock, 3D - Fluids harder to mix in the heavier fluid side indicated by larger variance - Approaching self-similarity near end of simulations ◆ロト ◆個ト ◆意ト ◆意ト 恵庫 めなび Man Long Wong AMS Seminar Jun 6th, 2019 46 / 62 #### TKE time evolution TKE is defined as: $$TKE = \frac{1}{2}\rho u_i'' u_i''$$ - TKE decays at faster rate for 3D problem compared to 2D - Among 3D cases, TKE decays at faster rate before re-shock for case with smaller Reynolds number - After re-shock, all 3D cases have similar TKE decay rates 47 / 62 Man Long Wong AMS Seminar Jun 6th, 2019 ## Turbulent kinetic energy (TKE) profiles • The TKE is normalized as: $TKE^* = \frac{(TKE) W}{\int \overline{TKE} \ dx}$ (a) After first shock, before reshock, 3D - (b) After reshock, 3D - Peak of TKE is biased towards the lighter fluid side, especially before re-shock □ > < □ > < □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > □ > Man Long Wong AMS Seminar Jun 6th, 2019 48 / 62 #### Anisotropy • The Reynolds stress anisotropy tensor b_{ij} for 2D and 3D flows defined as: $$b_{ij}^{2D} = \frac{\tilde{R}_{ij}}{\tilde{R}_{kk}} - \frac{1}{2}\delta_{ij}, \quad b_{ij}^{3D} = \frac{\tilde{R}_{ij}}{\tilde{R}_{kk}} - \frac{1}{3}\delta_{ij}, \quad \text{where } \tilde{R}_{ij} = \frac{\overline{\rho u_i'' u_j''}}{\bar{\rho}}$$ - 2D Reynolds normal stresses becoming isotropic at a faster rate than 3D stresses before re-shock - After re-shock, 2D Reynolds normal stresses become isotropic Man Long Wong AMS Seminar Jun 6th, 2019 49 / 62 #### Summary - 2D and 3D RMI have very different time evolution for mixing width and TKE and final mixedness values - Reynolds stresses of 2D flow approaching isotropy quickly after both shocks; Reynolds stresses of 3D flows remain anisotropic at the of simulations - Fluids are more difficult to mix in 2D configuration - Reducing Re_W has significant effect before re-shock: - \circ smaller growth rate of W - \circ larger Θ - larger decay rate of TKE - Reynolds number has much smaller effect on the growth of mixing width/decay of TKE after re-shock More analysis on probability density functions and spectra can be found in manuscript submitted to $Physical\ Review\ Fluids^{25}$ ²⁵ Man Long Wong, Daniel Livescu, and Sanjiva K. Lele. "High-resolution Navier-Stokes simulations of Richtmyer-Meshkov instability with re-shock". In: arXiv preprint arXiv:1812.01785 (2018). #### Outline - 1. A localized dissipation nonlinear scheme for shock- and interface-capturing in compressible flows - 2. An adaptive mesh refinement framework for multi-species simulations with shock-capturing capability - 3. High-resolution Navier-Stokes simulations of Richtmyer-Meshkov instability with re-shock - 4. Budget of turbulent mass flux and its closure for Richtmyer-Meshkov instability Man Long Wong AMS Seminar Jun 6th, 2019 51 / 62 #### Favre-averaged momentum equation • Direct numerical simulation (DNS) or large eddy simulation (LES) still very expensive Reynolds-averaged / Favre-averaged Navier-Stokes (RANS/FANS) simulation with - turbulence modeling is an interim tool - Most turbulent mixing models only tested with experimental results for RM turbulence - High-fidelity simulation data also important for model validation - Favre-averaged momentum equation $(\tilde{\cdot} = \overline{\rho(\cdot)}/\overline{\rho})$: $$\frac{\partial \left(\bar{\rho}\tilde{u}_{i}\right)}{\partial t} + \frac{\partial \left(\bar{\rho}\tilde{u}_{k}\tilde{u}_{i}\right)}{\partial x_{k}} = -\frac{\partial \left(\bar{p}\delta_{ki}\right)}{\partial x_{k}} + \frac{\partial \bar{\tau}_{ki}}{\partial x_{k}} - \frac{\partial \left(\bar{\rho}\tilde{R}_{ki}\right)}{\partial x_{k}}$$ • $\tilde{R}_{ij} = \overline{\rho u_i'' u_j''}/\bar{\rho}$: Favre-averaged Reynolds stress Man Long Wong AMS Seminar Jun 6th, 2019 52 / 62 #### Reynolds stress Algebaric closure model based on turbulent kinetic energy is not good: $$\tilde{R}_{ij} \approx \frac{2}{3}k\delta_{ij} - 2C_{\mu}S\sqrt{k}\tilde{S}_{ij}, \quad \tilde{S}_{ij} = \frac{1}{2}\left(\frac{\partial \tilde{u}_i}{\partial x_j} + \frac{\partial \tilde{u}_j}{\partial x_i}\right) - \frac{1}{3}\frac{\partial \tilde{u}_k}{\partial x_k}\delta_{ij},$$ ullet To improve, transport equation of $ilde{R}_{ij}$ is considered: $$\underbrace{\frac{\partial \bar{\rho} \tilde{R}_{ij}}{\partial t}}_{\text{ROC}} \underbrace{+ \underbrace{\frac{\partial \left(\bar{\rho} \tilde{u}_k \tilde{R}_{ij} \right)}{\partial x_k}}_{\text{convection}} = \underbrace{\mathbf{a_i} \left(\frac{\partial \bar{p}}{\partial x_j} - \frac{\bar{\tau}_{jk}}{\partial x_k} \right) + \mathbf{a_j} \left(\frac{\partial \bar{p}}{\partial x_i} - \frac{\partial \bar{\tau}_{ik}}{\partial x_k} \right) - \bar{\rho} \tilde{R}_{ik} \frac{\partial \tilde{u}_j}{\partial x_k} - \bar{\rho} \tilde{R}_{jk} \frac{\partial \tilde{u}_i}{\partial x_k}}_{\text{production}}$$ + turbulent transport (unclosed) + pressure strain redistribution (unclosed) + dissipation (unclosed) #### Turbulent mass flux and density-specific-volume covariance - $a_i = \overline{\rho' u_i'}/\overline{\rho}$: velocity associated with turbulent mass flux - To close $\bar{\rho}a_i$, BHR model by Besnard et al. 26 suggests to model transport of $\bar{\rho}a_i$: $$\underbrace{\frac{\partial \left(\bar{\rho}a_{i}\right)}{\partial t}}_{\text{ROC}} \underbrace{+ \frac{\partial \left(\bar{\rho}\tilde{u}_{k}a_{i}\right)}{\partial x_{k}}}_{\text{convection}} = \underbrace{b \left(\frac{\partial \bar{p}}{\partial x_{i}} - \frac{\partial \bar{\tau}_{ki}}{\partial x_{k}}\right) - \tilde{R}_{ik} \frac{\partial \bar{\rho}}{\partial x_{k}}}_{\text{production}} + \text{redistribution}$$ $$+ \text{turbulent transport (unclosed)} + \text{destruction (unclosed)}$$ - $b = -\rho'(1/\rho)'$: density-specific-volume covariance - BHR-3 model by Schwarzkopf et al. 27 recommends to model transport of $\bar{\rho}b$: $$\underbrace{\frac{\partial \bar{\rho}b}{\partial t}}_{\text{ROC}} \underbrace{+ \frac{\partial \left(\bar{\rho}\tilde{u}_k b\right)}{\partial x_k}}_{\text{convection}} = \underbrace{-2\left(b+1\right) \mathbf{a}_k \frac{\partial \bar{\rho}}{\partial x_k}}_{\text{production}} + \text{redistribution} + \text{turbulent transport (unclosed)}$$ + destruction (unclosed) ²⁶Didier Besnard et al. Turbulence transport equations for variable-density turbulence and their relationship to two-field models. Tech. rep. Los Alamos National Lab., NM (United States), 1992. ²⁷ John D Schwarzkopf et al. "Application of a second-moment closure model to mixing processes involving multicomponent miscible fluids". In: Journal of Turbulence 12 (2011), N49, ## Profiles of $\bar{\rho}a_1$ (in moving frame of interface) - Using highest Reynolds number 3D case in previous section - $\tilde{x} = x x_i$, where x_i is location of interface - ullet After both first shock and re-shock, $ar ho a_1$ spreads and the peak decreases over time Man Long Wong AMS Seminar Jun 6th, 2019 55 / 62 ## Budget of turbulent mass flux, $\bar{\rho}a_1$ (in moving frame of interface) - The production and destruction (unclosed) terms are dominant terms in the budget - The net LHS (rate of change + convection) is negative in the middle part of mixing layer, causing $\bar{\rho}a_1$ to decrease in magnitude after first shock and re-shock - Turbulent transport (unclosed) term spreads the profile - Redistribution and convection terms are small over time ◆ロト 4周ト 4 三ト 4 三ト 三日 900 56 / 62 #### Budget of turbulent mass flux, $\bar{\rho}a_1$ • Destruction consists of three unclosed components: $\bar{\rho}(1/\rho)'p'_{,1}$, $-\bar{\rho}(1/\rho)'\tau'_{1i,i}$, $$\bar{\rho}\epsilon_{a_1} = -\bar{\rho}u_i'\frac{\partial u_k'}{\partial x_k}$$ • $\bar{\rho}(1/\rho)'p'_1$ is the only important term after re-shock Man Long Wong AMS Seminar Jun 6th, 2019 57 / 62 # Assessment of BHR-3²⁹ model: unclosed terms of transport equation of $\bar{\rho}a_1$ • Turbulent mass flux, $\bar{\rho}a_1$: | Unclosed Term | Exact Form | Modeled Form ²⁸ | |---------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------| | Turbulent transport | $-\bar{\rho}\frac{\partial\left(\overline{\rho'u'u'}/\bar{\rho}\right)}{\partial x}$ | $2C_{a}\bar{\rho}\frac{\partial\left[\left(S\tilde{R}_{11}/\sqrt{k}\right)a_{1,1}\right]}{\partial\underline{x}}$ | | Destruction | $\bar{\rho} \left(\frac{1}{\rho} \right)' \frac{\partial p'}{\partial x}$ | $-C_{a1}\bar{\rho}\frac{\sqrt{k}}{S}a_1$ | - C_a amd C_{a1} are model coefficients; S is a turbulent length scale - Assuming S uniform inside mixing region (ignoring S), cancelling common terms and operators for analyzing validity of model after re-shock (after mixing transition has occurred) $^{^{28}}k = \tilde{R}_{ii}/2$ is turbulent kinetic energy per unit mass ² Schwarzkopf et al., "Application of a second-moment closure model to mixing processes involving multicomponent miscible fluids" 🛊 🗦 🔻 🐉 💐 🤊 🧠 # BHR-3 assessment: unclosed terms of $\bar{\rho}a_1$ transport equation (after re-shock) • Turbulent transport: • Destruction: ## BHR-3 assessment: turbulent length scales S (after re-shock) - ullet W: integral mixing width - Least square fit within mixing region to estimate S's required for turbulent transport and destruction terms of $\bar{\rho}a_1$ • Two length scale turbulence model BHR3.1 [Schwarzkopf et al., 2015] seems unnecessary for a_1 60 / 62 #### Summary - ullet $ar{ ho}a_i$ plays an important role for modeling of R_{ij} in BHR-3 model - $\bar{\rho}a_1$ transport equation was analyzed - Destruction term in budget of $\bar{\rho}a_1$ has different composition before and after re-shock (after mixing transition) - ullet BHR-3 model captures shapes of unclosed terms of $ar{ ho}a_1$ transport equation well - S's required for modeling unclosed terms of $\bar{\rho}a_1$ transport equation dependent on each other Analysis of budgets and closures for \tilde{R}_{ij} and b discussed in thesis Man Long Wong AMS Seminar Jun 6th, 2019 61 / 62 #### Conclusions - High-resolution and localized dissipation schemes improved for shock problems that involve flow instabilities and turbulence - AMR framework was developed and shown to be robust for problems that involve shocks and multi-species - Asymmetric variable-density mixing effects examined - Reynolds number has large effect on the flows before re-shock (before mixing transition) - ullet The BHR-3 model has good modeling assumptions for the $\bar{ ho}a_1$ transport equation for post-transition flows Man Long Wong AMS Seminar Jun 6th, 2019 62 / 62 ## Questions? The PhD research was partially supported by Los Alamos National Laboratory, under grant number 431679.